Some sharp function estimates for vector-valued multilinear integral operator
نویسندگان
چکیده
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملSome BMO estimates for vector-valued multilinear singular integral operators
Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined as [b,T ]( f )(x) = b(x)T ( f )(x)−T (b f )(x). By using a classical result of Coifman et al [8], we know that the commutator [b,T ] is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. However...
متن کاملSome sharp inequalities for multilinear integral operators
In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the (L p , L q)-norm inequalities and Morrey spaces boundedness for the multilinear operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2013
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2013.624